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Chairwoman Johnson, Ranking Member Lucas, and Members of the Committee, thank you for 
the opportunity to describe the Event Horizon Telescope (EHT) and its truly extraordinary 
capabilities that have enabled this milestone scientific result. 
 
A different kind of telescope 
 
The EHT operates on the principle of interferometry.  Rather than describe this in technical 
detail, it is useful instead to start with the mental image of a conventional telescope, creating an 
image by focusing light from a distant object onto a sensor array – like a digital camera with a 
really long telephoto lens attached. 
Generally, the bigger the lens, the more light is gathered, the fainter the objects that can be seen, 
and the greater the magnification that can in principle be achieved.  If the telescope optics are 
literally perfect, the amount of detail that can be seen, or equivalently the amount of 
magnification of an area of sky that can be applied, depends only on how big the lens is on the 
front of the telescope. 
The black hole in the galaxy M87 is billions of times more massive than our Sun, which means 
that its event horizon is comparable in size to the extent of our entire solar system.  This is a 
scale so huge that it defies human imagination to fully grasp.  And yet, it lies so far away, 55 
million light years, that it appears to us as something extremely tiny on the sky1.  So tiny in fact 
that no optical telescope ever built, either on the ground or in space, has anything close to the 
magnification required to see what the EHT has seen.  Such a telescope would need a lens, or a 
mirror, several miles across to achieve that level of detail, and the optics would have to be 
perfect. 
We cannot physically build such a telescope, but by using a range of key, recently available 
technologies, we are now able to reproduce the capabilities of one.  An optical telescope would 
need to be several miles across, but at the radio wavelengths used by the EHT we must 
synthesize a virtual telescope that is instead the size of the earth, many thousands of miles 
across.  How is this done? 
 

                                                
1 A sense of the enormous level of magnification required for black hole imaging, and achieved by the EHT, is 
provided by the graphic on the next page. 



 



Capturing and storing photons 
 
The radio dishes of the EHT sit atop mountains around the world, and in one case on top of a 
massive ice sheet at the South Pole.  Each of these dishes can be thought of as sitting directly in 
front of an imaginary earth-sized lens.  If that lens were real, radio photon paths would be bent 
by it, and come to a focus point somewhere in space where we could place a sensor array to 
capture an image.  Instead, we capture the photons that strike the radio dishes, and store them as 
digital data on ordinary computer hard disks – lots of them.  A radio photon is a little bundle of 
energy, just like a photon of visible light, so more radio photons equates to more energy that can 
be measured.  A key technical challenge of the EHT was to collect enough of these photons so 
that a faint object like a distant black hole could be detected. 
One way to get more photons is to use bigger dishes, and to use dishes on mountaintops so that 
the earth’s atmosphere does not bury those photon signals in unwanted noise.  A major part of 
the recent success was an NSF-funded project, leading an extensive international effort to 
combine the signals from dozens of dishes of the Atacama Large Millimeter Array (ALMA) high 
in the Chilean Andes, allowing them act together as one much larger dish. 
The other way to get more photons is simply to capture and record enormous amounts of digital 
data, by opening up the range of radio frequencies received by each telescope (like listening to 
many radio stations at once), and sending the resulting torrent of bits and bytes to a high-speed 
recording device.  The more data that gets recorded, the more photons get captured, and the 
fainter the objects that can be seen. 
Using modern disk drives with massive storage capacities, and specially designed electronics and 
systems to feed up to 128 spinning disks at once, the EHT systems are already capable of 
recording 64 gigabits per second at each radio dish.  To put this in perspective, this is the 
equivalent of streaming more than 11,000 full HD movies at the same time.  A full EHT 
observing campaign fills up thousands of high capacity disks, weighing several tons. 
Capturing such data volumes at many sites takes extensive preparation, attention to detail, and 
extraordinary efforts by individuals, who travel to the far corners of the world and deploy their 
energies and talents to oversee the correct operation of the radio dishes and EHT equipment.  
The global nature of the telescope is mirrored by the international nature of the dedicated team of 
scientists, engineers and operational staff who make these remarkable observations possible from 
some of the most remote and inhospitable locations on the planet. 
This work is difficult and demanding, but EHT staff engage in it with energy and enthusiasm for 
a truly inspiring research mission that exemplifies human curiosity and the quest for knowledge.  
It is a great privilege to be witness to, and in some measure to facilitate, the process of discovery 
pursued by a diverse team inspired by the prospect of opening a new window onto the most 
extreme environments known to science – the domain of warped spacetime, relativistic motions 
and prodigious energy release surrounding the event horizons of black holes. 
Their efforts, and those of others with varied and essential responsibilities throughout the project, 
deserve our recognition and profound gratitude.  It is my intent that today, with this testimony, 
we fully represent the contributions of the more than 200 members of the international EHT 
collaboration. 
 



A computational lens 
 
Photons that strike the dishes are detected, converted into digital data and stored, effectively 
capturing them.  Those that miss the dishes are lost forever and never reach our imaginary 
planet-sized lens.  But for those photons that were “captured”, we can transport them to a central 
location using ordinary shipping methods, play them back from the disks, and manipulate them 
in such a way that they come to the same point at the same time, just as they would have done if 
the lens was real.   
This is done by a process known as “correlation” which takes account both of ultraprecise 
synchronization of the recorded data as derived from atomic clocks at each dish, and of 
exquisitely detailed modeling of the imperfect rotation of the Earth which determines the precise 
positions and velocities of the dishes at any given instant, relative to the target on the sky.  It then 
mathematically compares the properties of the signals coming from each of the dishes.   
This is the essence of “radio interferometry”, in which signals from widely separated dishes are 
combined and, provided they have been perfectly lined up with each other, compared in order to 
precisely measure how much they differ from each other from nanosecond to nanosecond.  It is a 
complex and extremely computationally intensive phase of EHT operation, supported by teams 
of scientists, correlator operators and software engineers. And it has become technically and 
financially feasible for the massive quantities of data required by the EHT only in recent years 
due to relentless and dramatic advancements in the computing industry. 
The EHT systems from the dishes all the way through to recorded data are complex, with 
behaviors that are not always wholly predictable.  In addition, the data are affected by weather 
conditions at the various dish sites.  Correlator operations at both the MIT Haystack Observatory 
in the USA and the Max Planck Institut für Radioastronomie in Germany are where such issues 
are diagnosed and corrected to the extent possible by experienced, expert staff.  The data 
undergo a range of rigorous quality checks, sometimes taking many months, before being 
released to the broader EHT collaboration for further analysis. 
Reproducing the function of a giant lens, at these short wavelengths and with such data volumes, 
represents a formidable achievement for our collaboration.  It is testament to more than a decade 
of NSF-supported developments, on diverse and challenging technical fronts, and all of us here 
today are proud to have participated in this work.  Without vision and risk-taking on the part of 
NSF, and the support and collaboration of our international partners, this result would not have 
been possible. 
Nevertheless, because the dishes we use are few and far between, we can build only a miniscule 
portion of our ideal earth-sized computational lens.  Given such sparsity of information, it has 
been necessary to develop advanced new techniques that take the correlated data and convert 
them into an image whose properties are well understood, and whose reliability can be 
objectively and quantitatively established.  That is the topic of the testimony to follow, by Dr. 
Bouman. 
 
 
 
 
 



The future 
 
The results we are celebrating here today are just the beginning for our black hole imaging 
endeavor, and for this field of science.  With data already in hand we will pursue Sagittarius A* 
at the center of our Milky Way galaxy, which is the only other black hole which appears big 
enough on the sky to be imaged with the current EHT. 
But the technology will continue to advance on many fronts, and the path to additional rapid 
scientific progress is already clear.  More dishes will be used to create increasingly precise 
images revealing subtle details and fainter features.  Dishes will be sent into space to create a 
telescope even bigger than the Earth with even more magnifying power, putting other black 
holes with different environments, orientations and parameters within reach, and allowing us to 
explore the ones we are currently studying on ever finer scales.  Movies of material spiraling into 
black holes will become possible, and some of the mysteries surrounding the generation of the 
remarkable jets of material emanating from these objects at close to light speed will start to be 
unraveled for the first time. 
The black hole image, already iconic across the globe, will also surely fire the imaginations both 
of young scientists pursuing advanced degrees or starting their first postdoctoral appointments, 
and of high school students or undergraduates who may aspire one day to participate in 
groundbreaking discoveries.  Such unique, high-profile and accessible scientific breakthroughs 
provide beacons with which to attract our brightest young minds from all backgrounds into 
science and technology, enriching and diversifying our national STEM workforce.   
But we need not wait to see the impact of the EHT project, because even before the image was 
generated, the mere possibility of achieving such a result inspired a cadre of talented young 
researchers and students to join the project, in dozens of institutes all over the world.  And this is 
epitomized by Dr. Bouman’s story. 
From a scientist’s perspective, these are exciting times indeed! 
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