Testimony of

Dr. Scott Weaver Director National Windstorm Impact Reduction Program Engineering Laboratory National Institute of Standards and Technology United States Department of Commerce

Before the

Committee on Science, Space, and Technology Subcommittee on Research and Technology & Subcommittee on Environment

United States House of Representatives

December 4, 2019

Introduction

Chairwoman Stevens, Chairwoman Fletcher, Ranking Member Baird, Ranking Member Marshall and members of the Subcommittees, I am Dr. Scott Weaver, Director for the National Windstorm Impact Reduction Program (NWIRP) at the Department of Commerce's National Institute of Standards and Technology (NIST). NWIRP is an interagency science and engineering based program focused on achieving major measurable reductions in losses of life and property from windstorms, through a coordinated federal effort. Since NWIRP's inception in 2004 we have made notable progress towards efforts to reduce windstorm impacts. This includes significant improvements in hurricane forecasts and increased tornado warning times, advancements in the science of wind mapping to inform engineering-based design standards, improved coordination practices and research support for post windstorm investigations, and implementation of post windstorm research-based recommendations into codes, standards, and practices. Despite these achievements, the Nation continues to experience increasing losses of life and property due to these extreme weather events, as evidenced by the devastating tornado outbreaks in 2011 and 2013, and the recent catastrophic hurricane seasons of 2005, 2012, 2016, 2017 and 2018.

I look forward to discussing the NWIRP program with you today, the progress we've made, challenges and recommendations for the future. Thank you for the opportunity to appear before you to discuss NWIRP.

Windstorm Impacts in the United States

Windstorms, and associated flooding, are the largest loss-producing natural hazards in the United States. The greatest of these losses are associated with tornadoes and hurricanes. During the period from 1980 to 2018, windstorms caused over \$1 trillion in economic losses and over 8,000 fatalities.¹ Every state in the country is exposed to windstorm hazards from one or more storm types, including tornadoes, tropical cyclones, thunderstorms, nor'easters, winter storms, and others.

Tornadoes occur in all 50 states, but mainly east of the Continental Divide. Over the past 10 years, tornadoes have caused an average loss of approximately \$10 billion per year. In 2011, six different tornado outbreaks affected 16 states and produced a combined damage of \$29 billion and 545 fatalities.² The 2011 Joplin Missouri tornado alone killed 161 people, injured over a thousand, and resulted in nearly \$3 billion in insured losses.³

Hurricanes primarily impact coastal states along the Atlantic Ocean and Gulf of Mexico, as well as Hawaii and U.S. territories in the Caribbean and the Pacific. 2017 and 2018 were record breaking years for windstorm losses in the United States with Hurricanes Harvey (\$130 billion

³ Final Report, National Institute of Standards and Technology (NIST) Technical Investigation of the May 22, 2011, Tornado in Joplin, Missouri, NIST NCSTAR-3, March 2014.

http://nvlpubs.nist.gov/nistpubs/NCSTAR/NIST.NCSTAR.3.pdf.

¹ NOAA National Centers for Environmental Information, U.S. Billion-Dollar Weather and Climate Disasters, 1980-2016 <u>https://www.ncdc.noaa.gov/billions/events</u>.

² The complete list of critical infrastructure sectors is given at https://www.dhs.gov/critical-infrastructure-sectors.

estimated damage), Irma (\$52 billion estimated damage), Maria (\$94 billion estimated), Florence (\$25 billion estimated), and Michael (\$25 billion estimated) comprising approximately 79 percent of the \$411 billion total of all extreme weather and climate events over that period.¹ In a 14 month span from August 2017 through October 2018, five major hurricanes (category 3 or higher) made landfall in the U.S., not including hurricane Florence, which made landfall as a category 1 storm, but caused catastrophic inland flooding impacts to the Carolinas from extreme rainfall.

Other, recent notable hurricane events include Hurricane Sandy (2012), which caused over a \$70 billion loss,¹ producing extensive damage in seven states, and Hurricane Katrina (2005), which caused over 1,200 fatalities and a loss in excess of \$150 billion, resulting in destructive storm surge along the Louisiana, Mississippi, and Alabama coasts, as well as high winds and damage as far inland as Ohio.

The Cost of Inaction

The costs associated with hurricanes are forecast to increase more rapidly than the growth of the economy. The Congressional Budget Office (CBO)⁴ projects that average annual losses due to hurricanes will increase from 0.16 percent of gross domestic product (GDP) to 0.22 percent of GDP by 2075. CBO projections include the effects of sea level rise, increased storm activity, population growth, increased coastal development, and increased per capita income in hurricane prone areas. These values do not take into account potential improvements in construction practices, land use practices, and building stock turnover. Similarly, population growth in tornado prone central and southeastern United States will likely result in increased loss of life and damage, unless cost effective measures are taken to reduce the impact of tornadoes on buildings and infrastructure.

The causes underlying these massive and rapidly increasing windstorm losses are many, varied, and complex. Some are related to long-term societal changes, such as the movement of population towards coastal areas in hurricane-prone regions of the U.S.⁵ Others relate to climate system variability and change⁶, lack of understanding of surface level storm characteristics and their associated hazards (e.g., extreme winds and rainfall, wind-borne debris, atmospheric pressure change, storm surge, and surge-borne debris), interactions of these hazards on the built environment, how to mitigate them, and how to effectively communicate with and educate the public and other stakeholders.

Advances in recent decades in atmospheric science have led to great improvements in forecasting and warning systems for hurricanes, tornadoes, and other windstorms; however, large

⁴ Potential Increases in Hurricane Damage in the United States: Implications for the Federal Budget, CBO, June 2016 <u>https://www.cbo.gov/publication/51518.</u>

⁵ <u>http://www.census.gov/topics/preparedness/about/coastal-areas.html.</u>

⁶ The Climate Science Supplemental of the National Climate Assessment: <u>https://science2017.globalchange.gov/</u>

knowledge gaps remain in aspects of windstorm climatology and hazards near the surface. This knowledge is critical for risk assessments and engineering design of the built environment to mitigate the impact of these hazards. Similarly, while great progress has been made in understanding earthquake effects on buildings and engineering design to resist those effects, comparatively less progress has been made in engineering for extreme winds and for coastal inundation hazards of wind-driven storm surge and waves. Without additional actions to mitigate windstorm hazards and thereby reduce windstorm risks, losses due to windstorms will only continue to increase.

Meeting the Challenge

In recognition of the necessary role for the Federal Government and other organizations in supporting windstorm impact reduction, Congress created NWIRP in 2004 to reduce the loss of life and property from windstorms (National Windstorm Impact Reduction Act of 2004, Public Law 108-360, Title II). On September 30, 2015, the National Windstorm Impact Reduction Act Reauthorization of 2015 (Public Law 114-52) was enacted, which reauthorized the program, made changes to leadership, oversight, and reporting requirements, modified the roles of the four program agencies, and updated other program aspects.

With Public Law 114-52, the lead agency function for NWIRP was moved to NIST from the Office of Science and Technology Policy (OSTP). In addition to overall leadership and coordination, NIST responsibilities include:

- Ensuring the program includes components necessary to promote the implementation of windstorm risk reduction measures;
- Requesting assistance of federal agencies other than the program agencies, as necessary; Coordinating all federal post-windstorm investigations to the extent practicable; Supporting the development of performance-based engineering tools and working with appropriate groups to promote the commercial application of such tools; and, When warranted by research or investigative findings, issuing recommendations to assist in
- informing the development of model codes, and providing information to Congress on the use of such recommendations.

There are four designated program agencies: The Federal Emergency Management Agency (FEMA), the National Institute of Standards and Technology (NIST), the National Oceanic and Atmospheric Administration (NOAA), and the National Science Foundation (NSF). These agencies work together to implement the program's three statutory components:

Improved understanding of windstorms, Windstorm impact assessment, and Windstorm impact reduction.

NWIRP activities span the full spectrum from research through implementation, including basic physical science, social science, and engineering research; problem focused research and codes and standards development; information dissemination, public education and outreach; and promotion of the adoption of windstorm preparedness and mitigation measures.

An Interagency Coordinating Committee oversees the program's planning and coordination, and consists of the heads or designees of FEMA, NOAA, NSF, the Office of Science and Technology Policy (OSTP), and the Office of Management and Budget (OMB), and is chaired by the Director of NIST or the Director's designee. A new Windstorm Working Group (WWG) was created in 2016 to provide closer program coordination at the working level.

A Vision for Windstorm Impact Reduction in the United States

To address the challenges discussed above, in 2018, NWIRP released its Strategic Plan - a comprehensive strategy developed in concert with stakeholders from across government, academia, and the private sector. The plan includes vision and mission statements, and goals to guide holistic windstorm impact reduction actions.

The NWIRP Vision is:

A nation that is windstorm-resilient in public safety and economic well-being.

The NWIRP Mission is:

To achieve major measurable reductions in the losses of life and property from windstorms through a coordinated federal effort, in cooperation with other levels of government, academia, and the private sector. NWIRP will support research aimed at improving the understanding of windstorms and their impacts, and develop technical guidance and support outreach initiatives encouraging the implementation of cost-effective mitigation measures to reduce those impacts.

Three overarching, long-term Strategic Goals have been established to accomplish this mission, consistent with identified needs and the statutory requirements of the program.

Goal A: Improve the Understanding of Windstorm Processes and Hazards

Our current understanding of the detailed characteristics of strong winds near the ground, extreme rainfall hazards, and coastal flooding, which are all critical to understanding and mitigating windstorm risk, is very limited. Goal A focuses on filling these gaps in our knowledge. NWIRP research directions and needs, include improved measurement and modeling of hurricanes, tornadoes, thunderstorms, and other windstorms, enabling a better understanding of the effects of extreme winds and rainfall, and wind-driven storm surge and waves on civil infrastructure and lifelines in the larger context of community resilience. Tools for windstorm hazard assessment need to be developed, including consideration of long term trends in windstorm frequency, intensity, and location, and how changes in these storm characteristics affect risk.

Goal B: Improve the Understanding of Windstorm Impacts on Communities

NWIRP needs to support basic and applied research to advance the scientific and engineering knowledge of wind and windstorm-induced impacts. The efforts under Goal B, informed by the results of Goal A, support increased windstorm resilience by nurturing the development of innovative and cost-effective approaches and products to improve the performance of buildings, lifelines, and other structures. Research directions include building a deeper understanding of physical effects of windstorm hazards on buildings and infrastructure as well as the social, cultural, behavioral, and economic factors influencing windstorm impacts and the adoption of

windstorm impact mitigation, supported by enhanced post-storm data collection. New computational tools will be developed for modeling interaction between wind and storm surge hazards and the built environment and for risk assessment and loss estimation.

Goal C: Improve the Windstorm Resilience of Communities Nationwide

The results from research and development activities of Goals A and B provide a solid foundation for the application and implementation of the windstorm impact reduction objectives of Goal C. NWIRP will support development of cost-effective windstorm-resistant materials and systems for use in new construction and retrofit of existing construction and development of more windstorm-resilient building codes and standards. NWIRP will also support development and implementation of improved windstorm forecasting methods to increase accuracy and warning time. There is a strong need to integrate results of research on societal response, hazard vulnerability and mitigation, disaster preparedness, emergency response, and disaster recovery into the implementation of social science research findings into the implementation activities of Goal C, and to increase public awareness of windstorm readiness, emergency communications and response.

Federal Coordination Following Tornadoes and Hurricanes

As lead agency for NWIRP, NIST coordinates post windstorm investigations with the other NWIRP program agencies, NOAA, FEMA, and NSF. The two most recent post windstorm investigations are the 2011 Joplin, Missouri tornado (completed in 2014) and the ongoing investigation of 2017's Hurricane Maria in Puerto Rico.

NIST Joplin Tornado Investigation

The Joplin tornado caused 161 fatalities and more than 1,000 injuries, making it the deadliest single tornado on record since the official U.S. records began in 1950. It was a record tornado that occurred in a year of record U.S. tornado activity and impacts. The Joplin tornado's high death toll occurred despite an official tornado warning time of about 17 minutes, greater than the National Weather Service (NWS) national average warning time of approximately 14 minutes.

NIST conducted a multi-year investigation into the wind environment and technical conditions associated with fatalities and injuries, the performance of emergency communications systems and public response, and the performance of residential, commercial, and critical buildings⁷. The investigation led to the development of 16 recommendations, including development of tornado hazard maps for use in engineering design of buildings and infrastructure. Prior to the NIST Joplin investigation, consideration of explicitly designing for the tornado hazard was virtually non-existent. Now, this concept is being actively discussed amongst a wide stakeholder constituency and is under consideration for incorporation into the American Society of Civil

⁷ <u>https://nvlpubs.nist.gov/nistpubs/NCSTAR/NIST.NCSTAR.3.pdf</u>

Engineers (ASCE) Standard 7-22 – Minimum Design Loads and Associated Criteria for Buildings and Other Structures.

Interagency NWIRP coordination played a direct role in the implementation of Joplin investigation recommendations. A team member from the National Oceanic and Atmospheric Administration (NOAA) National Severe Storms Laboratory (NSSL) served on the NIST investigative team, facilitating the implementation of another recommendation from the NIST Joplin report,

"NIST recommends that technology be developed to provide tornado threat information to emergency managers, policy officials, and the media on a spatially resolved real-time basis to supplement the currently deployed official binary warn/no warn system."

Specifically, NOAA used this recommendation as additional support for its new weather warning concept, FACETs (Forecasting a Continuum of Environmental Threats), potentially shifting the National Weather Service (NWS) from (primarily) teletype-era, deterministic watch–warning products to high-resolution, probabilistic hazard information (PHI) spanning periods from days (and longer) to within minutes of high-impact weather and water events.⁸

Additionally, NIST coordinated with FEMA by sharing NIST preliminary observations of the damage in advance of FEMA's deployment to Joplin, Missouri under their Mitigation Assessment Team (MAT) Program.

NIST Hurricane Maria Program

NIST is currently investigating the effects of Hurricane Maria in Puerto Rico.⁹ On September 20, 2017, Hurricane Maria made landfall in Puerto Rico, damaging infrastructure that its communities relied on for medical care, safety, mobility, communications, and more. To better understand how the buildings and infrastructure failed, and how we can prevent such failures in the future, NIST began to study how critical buildings and infrastructure systems performed during the storm.

NIST deployed several disaster experts to Puerto Rico in December 2017 with expertise spanning structural engineering, sociology, emergency communications, and IT support. One of the NIST experts was embedded within a FEMA Mitigation Assessment Team (MAT) that was conducting similar preliminary reconnaissance of the damage caused by Hurricane Maria. This pre-planned coordination with FEMA allowed for both agencies to share information and cover a wider range of reconnaissance activities. The NIST embedded team member also served as an author on the subsequent FEMA MAT report for Hurricanes Maria and Irma.¹⁰

⁸ <u>https://journals.ametsoc.org/doi/full/10.1175/BAMS-D-16-0100.1</u>

⁹ A public announcement of the Hurricane Maria study can be found at: <u>https://www.nist.gov/news-events/news/2018/05/nist-launches-study-hurricane-marias-impact-puerto-rico</u> ¹⁰ <u>https://www.fema.gov/media-library/assets/documents/173789</u>

The NIST Hurricane Maria Program seeks to understand Hurricane Maria's multi-hazard impacts (i.e., wind, rainfall, flooding, landslides, storm surge) and the conditions that led to injuries and deaths; how critical buildings and designated safe areas within them performed—including their dependence on electricity, water, transportation, and other infrastructure; how emergency communications systems performed and the public's response to such communications; and the impacts to, and recovery of, selected businesses, hospitals and schools, as well as the critical social functions they provide.

As with the Joplin tornado investigation, NWIRP coordination figures prominently in the Hurricane Maria Program. In collaboration with the University of Florida (UF), wind tunnel testing of various sites in Puerto Rico where critical buildings experienced significant damage from Hurricane Maria is being conducted using the NSF Natural Hazards and Engineering Research Infrastructure (NHERI) sponsored facility at UF – a signature example of NWIRP post windstorm coordination activity.

Additional NWIRP coordination on Hurricane Maria includes the NSF investment in 34 Rapid Response Projects (RAPID) to gather ephemeral data following the storm and conduct basic research. The outcomes of the RAPID NSF Hurricane Maria projects are being shared with the wider research community, serving as an important source of additional information for the NIST Hurricane Maria Program, and other similar research efforts aimed at reducing hurricane impacts in the United States.

After completion of the Hurricane Maria study, NIST will pursue and track implementation of its recommendations in an effort to reduce windstorm impacts Nationwide.

Conclusion

NWIRP continues to make strides in implementing the strategy put forth in its strategic plan. However, as losses continue to mount, there is much work to be done. NWIRP stands ready to engage with Congress to strengthen this vital program.

We greatly appreciate the efforts of the members of these committees and other members of Congress to support resilience programs that keep the Nation safe.

I am pleased to answer any questions you may have.

Dr. Scott J. Weaver

Scott J. Weaver is Director of the National Windstorm Impact Reduction Program (NWIRP) in the Engineering Laboratory at the National Institute of Standards and Technology (NIST). NWIRP is a federal interagency sciencebased program focused on achieving major measurable reductions in the losses of life and property from windstorms, by leveraging the latest science and best practices from across the federal government, academia, and the private sector. Dr. Weaver also holds an appointment as Adjunct Associate Professor in the Department of Atmospheric and Oceanic Science at the University of Maryland.

Prior to joining NIST in 2018, Dr. Weaver served as the Senior Climate Scientist for Environmental Defense Fund where he was engaged in scientific research and outreach at the intersection of meteorology, climate science, and international climate policy. Dr. Weaver also spent several years as a Research Meteorologist in the Climate Prediction Center at the National Oceanic and Atmospheric Administration (NOAA), where his scientific research activities led to improved understanding of the climatic context for extreme weather events (e.g., droughts, floods, heat waves, and tornadoes), and the deployment of this information to inform the development of prediction products, peer reviewed journal publications, scientific assessments, conference proceedings, outreach activities, and educational applications. After receiving a B.S. in Meteorology from Rutgers University, and an M.S. and Ph.D. in Atmospheric and Oceanic Science from the University of Maryland, Dr. Weaver conducted postdoctoral research at the Global Modeling and Assimilation Office of the National Aeronautics and Space Administration (NASA), where his research focused on elucidating the physical mechanisms that link global scale climate variability and change to the regional expression of warm season droughts and floods over the U.S.

Dr. Weaver currently chairs the NWIRP Windstorm Working Group, a federal interagency partnership that carries out coordination and implementation of the NWIRP program. He is also a member of the American Meteorological Society and American Geophysical Union, and has served on numerous panels and working groups, including the interagency Climate Change and Water Working Group, The U.S. CLIVAR Prediction Predictability Applications Interface, NOAA's Drought Task Force, NOAA's Climate Prediction Task Force, and the climate.gov Science Review Board. From 2011 - 2014 Dr. Weaver was an editor for the American Meteorological Society's annual State of the Climate report. Dr. Weaver also serves as a research mentor for undergraduate and graduate students through various federal science and academic research programs.

Dr. Weaver was awarded the Presidential Early Career Award for Scientists and Engineers (PECASE) in 2012, for innovative research at the frontiers of science and technology.

Education

Ph.D., Atmospheric and Oceanic Science, University of Maryland

M.S., Atmospheric and Oceanic Science, University of Maryland

B.S., Meteorology, Rutgers University