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Chairman Bucshon, Ranking Member Lipinski and Members of the Subcommittee, 

thank you for the opportunity to testify today concerning the use of science to address the 

problem of methamphetamine addiction in the United States.  My name is Edythe London, and I 

am Director of the Laboratory of Molecular Neuroimaging of the David Geffen School of 

Medicine at the University of California at Los Angeles (UCLA). 

 Our program of research at UCLA began in 1999 with the generous support from the 

Office of National Drug Control Policy (ONDCP) and was one of the first major research efforts 

in the nation to address the growing problem of methamphetamine addiction.  Here I would like 

to note at the outset that the strong support from the Congress to the National Institutes of 

Health and its research recipients over the past two decades have enabled both basic research as 

well as the development of new medications and treatment modalities. This critical area 

continues to be important, affects many lives in our nation, and needs your continued support. 

 Why is methamphetamine such a critical problem?  Unlike other drugs of abuse, 

methamphetamine is relatively easy to manufacture; the street cost to the use is low compared to 

other drugs; and it produces a “high” that is long-lasting.  At the same time there are very 

significant mental and  physical effects from its use, and in far too many cases, it is a cause of 

early death. 

1. Methamphetamine Abuse and the Scope of the Problem in the U.S. 

Methamphetamine use disorders (classified as methamphetamine abuse and dependence 

in DSM-V) are major public health problems [1-3], with >14.3 million adults estimated to be 

using amphetamine-type stimulants for non-medical purposes worldwide. Among illicit 

substances, amphetamines are second only to marijuana in prevalence of use, exceeding heroin 

and cocaine combined [4]. In the United States, admissions to publicly funded drug treatment 

programs for amphetamine-related problems peaked at 8.1% in 2005 and increased from 3.7% 

to 5.7% between 2000 and 2010 [3]. The cost of MA abuse in the US in 2005 was estimated at 

$23.4 billion [5], and was associated with crime, premature mortality, lost productivity, and 

medical conditions, such as infectious disease and cardiovascular insults [6-8].  

The illegal use of methamphetamine in our country is not as widespread as it was in the 

early to mid-2000s [9], now reduced to 50% of the levels of 2006; however, the problem is still 

severe in the communities where there still are established cores of users and supply 

connections set up with the Mexican cartels.  In California, for example, admissions to treatment 

for methamphetamine use disorders in 2009 and 2010 exceeded admission rates for all other 

substances, including alcohol [10, 11].   

2. How is Methamphetamine Different from Other Stimulants? 

Among stimulants, methamphetamine is unique in its pharmacokinetic and pharmaco-

dynamic properties, which render it more effective as a stimulant, more addictive, and more 

toxic.   Methamphetamine is structurally very similar to amphetamine and related agents, such as 

MDMA (3,4-methylenedioxy-N-methylamphetamine), which is widely known as “ecstasy”, and 

http://www.drugabuse.gov/publications/research-reports/methamphetamine-abuse-addiction/how-methamphetamine-different-other-stimulants-such-cocaine
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designer drugs, such as cathinone derivatives (including “bath salts”). The amphetamines, 

including methamphetamine, are similar to cocaine in causing an increase of dopamine and other 

neurotransmitter levels in the synapse, augmenting their actions. Along with cocaine, the 

amphetamines have similar stimulant and euphorigenic properties. The amphetamines, however, 

have long durations of action (half-life of 9-12 hours for methamphetamine) [12] and, therefore, 

longer stimulant effects than cocaine, which has a half-life of 1 hour and behavioral effects that 

last up to an hour, depending on the dose and route of administration [13]. Methamphetamine 

also is well absorbed following administration by various routes, including inhalation; and it is  

highly lipophilic, entering the brain faster than other stimulants (including amphetamine), and is 

more stable to enzymatic degradation in the brain [14]. Finally, methamphetamine is more potent 

than other stimulants [15], leading to much higher concentrations of synaptic dopamine than 

cocaine, producing toxic effects on nerve terminals. These pharmacokinetic considerations, 

along with the lower cost as compared with cocaine, likely contribute to a more chronic and 

continuous use pattern of methamphetamine as compared with cocaine, which is used more in 

binges. They also may contribute to differences in addiction potential, with only 16-20% of 

cocaine abusers progressing from regular use to dependence [16, 17]. A corresponding figure for 

methamphetamine is not available.   

 Methamphetamine users stay under the influence for longer stretches of days and weeks, 

with extensive sleep deprivation, possibly contributing to the greater incidence of associated 

psychosis than with cocaine, along with poor health maintenance and hence more medical 

consequences (e.g., cardiovascular, neurological) than with cocaine. One notable problem 

involves dental problems, referred to as “meth mouth”, due to diminished saliva production and 

other putative mechanisms; this problem is most commonly seen in intravenous users of the drug 

[18].  Other problems are the potential for prolonged psychosis [19, 20] and high rates of suicide 

attempts [21].  

 

Finally, methamphetamine is used heavily in the community of men who have sex with 

men worldwide, and its use is connected to risky sexual behavior among these individuals more 

than cocaine abuse.  Methamphetamine use is highly associated with HIV infection in gay men 

[22], and is the only drug whose use has shown significant correlation with the incidence of HIV 

infection among gay and bisexual men who are methamphetamine users [23]. No other drug has 

shown consistent and significant correlations with HIV transmission. Moreover, metabolic 

abnormalities in the brain due to HIV and chronic methamphetamine use are additive [24].  

3. How have Basic Science Studies Advanced Knowledge about Addiction 

to Methamphetamine? 

 
Building on a large body of preclinical research, controlled laboratory studies of  human 

volunteers have provided critical insights into the factors that influence methamphetamine use, 

and the maladaptive consequences of chronic exposure. Noninvasive brain imaging techniques, 

such as positron emission tomography (PET) and magnetic resonance imaging (MRI), have 

proven to be particularly valuable for this purpose, clarifying the effects of methamphetamine 

use on brain chemistry, structure, and function. In related studies, neuroimaging procedures 

have assisted in the elucidation of the neural mechanisms underlying key behavioral 

abnormalities thought to promote compulsive drug use and predict poor treatment response. A 

http://en.wikipedia.org/wiki/Stimulants
http://www.drugabuse.gov/publications/research-reports/methamphetamine-abuse-addiction/how-methamphetamine-different-other-stimulants-such-cocaine
http://www.drugabuse.gov/publications/research-reports/methamphetamine-abuse-addiction/how-methamphetamine-different-other-stimulants-such-cocaine
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synthesis of the findings indicate that chronic use of methamphetamine is associated with 

deficits in the cerebral cortex and striatum, which accompany and appear to contribute to 

cognitive deficits, including impaired inhibitory control [25 review]. 

Molecular Neuroimaging. Human molecular neuroimaging studies suggest that, in 

addition to effects on other neurotransmitter systems [e.g., 26-28, 29 review], chronic 

methamphetamine use causes a down-regulation of dopamine neurotransmission in the striatum, 

which can disrupt cognitive processes in ways that may undermine the user’s ability to remain 

abstinent. Dopamine signaling in the brain is critically involved in reward processing and 

motivation [30 review], and is linked to activity in the prefrontal cortex, with bi-directional 

influences guiding reward-related behavior and decision-making [31]. Dopamine signaling in 

the brain is influenced by the integrity of receptors for the neurotransmitter (D1 and D2 

subtypes), by activity-dependent release of the transmitter from the neuronal terminals into to 

the synapse, by its reuptake to the presynaptic terminal, and by metabolic enzymes. 

These studies have revealed that chronic methamphetamine abuse is associated with 

deficits in several markers of dopamine signaling in the striatum, including dopamine D2-type 

receptor availability [32-35], dopamine transporter availability [36-40], and activity of the 

presynaptic dopaminergic terminal, indexed by dopamine release [34]. These deficits may 

contribute to a “Reward Deficiency Syndrome”, characterized by anhedonia and a dysfunctional 

“impulsive-addictive-compulsive” trajectory of behaviors, in which one rewarding substance or 

activity is substituted for another. During early abstinence, methamphetamine addicts exhibit 

unusually high caloric intake, presumably reflecting the substitution of food for 

methamphetamine, and caloric intake is negatively correlated with striatal D2-type dopamine 

receptor availability [35].  Moreover, low striatal D2-type receptor availability has been linked 

with greater self-reported impulsivity in abstinent methamphetamine users [33], and along with 

reduced striatal dopamine release, with greater likelihood of relapse during treatment [34].  

Although there is evidence for recovery of the dopamine transporter protracted abstinence [39], 

this is not true for D2-type dopamine receptors. A direct relationship between the recovery of 

dopamine transporters and duration of abstinence from methamphetamine [37] suggests that 

reductions in the striatal dopamine transporter associated with methamphetamine dependence 

may reflect short-term, drug-induced neuroadaptations. 

Studies of the vesicular monoamine transporter (VMAT2), which is present in all 

monoaminergic neurons, also have pointed to a transient neuroadaptation in response to 

methamphetamine exposure.  Lower striatal VMAT2 was seen in postmortem brain tissue from 

former methamphetamine abusers [41], and PET studies of striatal VMAT2 in vivo showed 

lower levels in methamphetamine users even after 3 months of abstinence [40]. In another 

study, however, recently abstinent methamphetamine-dependent individuals had greater 

VMAT2 binding availability than controls [42], but increases relative to control subjects were 

seen only in those who had most recently used methamphetamine (<12 days) [42]. Collectively, 

these findings suggest that increased VMAT2 may be a transient response to drug exposure and 

the reduction in VMAT2 binding observed after longer abstinence may indicate lasting damage 

to neuronal terminals as a consequence of drug use.  

With respect to D2-type dopamine receptor deficits, methamphetamine abusers are not 

unique, as chronic users of cocaine [43], alcohol [44], opiates [45], or nicotine [46, 47] all 
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display below normal levels of striatal D2-type receptor availability.  This commonality across 

several addictive disorders raises questions regarding the extent to which low D2/D3 receptor 

availability predates drug abuse, or is an effect of chronic drug exposure. For ethical reasons, 

this question could be answered only by measuring D2-type receptor availability before any drug 

use and performing a longitudinal study in which individuals naturalistically self-administer the 

drug, or by animal studies in which the agent is administered under controlled conditions. In this 

regard, Vervet monkeys exposed to a methamphetamine dosing regimen designed to mimic 

human consumption of the drug showed significant decreases in striatal D2-type receptor 

availability after 2 weeks of methamphetamine exposure. These deficits persisted for at least 7 

weeks following cessation of treatment [48], indicating deleterious effects that are long lasting. 

Taken together, these findings indicate that while D2-type receptor deficiencies in 

methamphetamine users may, to some extent reflect a vulnerability to drug abuse, chronic 

methamphetamine abuse negatively impacts the dopamine system in the brain.       

Other relevant data center on the D3 receptor, a member of the D2-type receptor family. 

The PET studies showing low striatal D2-type receptor availability in methamphetamine users  

employed radiotracers that do not distinguish between D2 and D3 receptors (both in the D2-type 

family). Development of a D3-preferring radiotracer, [
11

C]-(+)-propyl-hexahydro-naphtho-oxazin 

[49], now allows assessment of D3 receptors in the living human brain.  D2 dopamine receptors 

are distributed uniformly throughout the striatum [50], but D3 receptors are localized primarily 

to the ventral striatum, which functions in reward processing and motivation [50, 51], making 

them of special interest with respect to addiction. A recent study has  shown higher binding of 

the D3-preferring tracer in D3-rich regions of the brain in methamphetamine users than in healthy 

controls, with  D3 receptor binding in the midbrain (substantia nigra) related to self-reports of 

“drug wanting” [52]. Therefore, unlike the D2 receptor, the D3 receptor may be upregulated in 

those who use methamphetamine chronically.  

In addition to the dopamine system, another subject of interest with respect to the effects 

of methamphetamine in the human brain is the serotonin system. For example, PET was used to 

show that compared with healthy controls, methamphetamine users had lower density of the 

serotonin transporter in the midbrain, thalamus, caudate, putamen, cerebral cortex, and 

cerebellum [28]. This reduction was inversely correlated with the duration of methamphetamine 

use; and the density in the orbitofrontal, temporal, and anterior cingulate areas was associated 

with aggression in the methamphetamine abusers. 

Microglial cells are activated in associated with neurodegenerative processes, and there is 

evidence that reactive microgliosis accompanies methamphetamine toxicity in animals [53-55]. 

Using PET, and a radiotracer for activated microglia, [
11

C](R)-(1-[2-chlorophenyl]-N-methyl-N-

[1-methylpropyl]-3-isoquinoline carboxamide) ([
11

C](R)-PK11195), an elevation in activated 

microglia was shown in methamphetamine users, suggesting that chronic self-administration of 

methamphetamine can cause reactive microgliosis in the human brain [56]. 

Functional Brain Imaging. Brain function can be evaluated using PET imaging and the 

radiotracer [
18

F]fluorodeoxyglucose, which can provide maps of how fast glucose is utilized 

throughout the brain.  PET studies of cerebral glucose metabolism in meth-amphetamine users, 

who had remained abstinent for periods varying from weeks to over 2 years, showed elevated 
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activity relative to control in cortical areas but 

apparently reduced glucose metabolism in subcortical 

regions [57]. When participants were studied in early 

abstinence (4-7 days) corresponding to the time that 

many clients would approach a treatment episode, 

there was clear evidence for corticolimbic 

dysregulation, with reduced activity in prefrontal and 

limbic cortex, but elevated activity in ventral striatum 

and amygdala (Figure 1); hyperactivity in the 

amygdala was associated with depression and anxiety 

[58]. Among a variety of cognitive deficits [59], the  

early-abstinent methamphetamine users had higher 

error rates than control subjects on a vigilance task 

and abnormal relationships between task performance 

and activity in the cingulate cortex and the insula, 

brain regions important for cognitive control, error-

monitoring and decision-making [60]. Over the course 

of a month of abstinence, cortical activity, especially 

in parietal cortex, increased [61], consistent with an umasking of reactive gliosis [56]. With 

protracted abstinence (12-17 months), glucose metabolism in thalamus but not the striatum 

recovered to control levels [62]. 

In addition to PET, functional MRI (fMRI) provides valuable information about brain 

function. With substantially greater time resolution than available with functional studies that use 

PET, fMRI allows measurement of brain activation while participants perform tasks that invoke 

cognitive and/or emotional processing. Such studies have shown that when abstinent, 

methamphetamine users exhibit less activation in prefrontal cortex than healthy controls during 

learning, attention, and emotion processing, consistent with deficits in cortical information 

processing [63-65]. Functional MRI studies also have also indicated that methamphetamine 

abusers have abnormalities in cortical activation when abstinent methamphetamine users choose 

between smaller, more immediate monetary rewards (which they favor) over larger, more 

delayed rewards [66]. While performing a task to test their temporal discounting of rewards, 

methamphetamine users exhibit as much recruitment in prefrontal and parietal areas of cortex 

when making an easy choice as when making a hard choice, suggesting an inefficiency of 

cortical function [66]. Defective prefrontal cortical control may also contribute to heightened 

aggression, a common feature of methamphetamine abuse [67], by limiting emotional insight. 

Functional MRI data have suggested that emotional insight relies on activity of the ventral 

inferior frontal gyrus, but that in methamphetamine-dependent participants exposed to an 

emotional probe, activity is low bilaterally in this area [68]. 
 

Broadly consistent with these findings and the view that a deficit in “top-down” cortical 

control is an important feature of methamphetamine abuse is the observation that cortical 

activation during a simple decision-making task can predict relapse risk in methamphetamine-

dependent individuals [69]. The regions involved include components of the prefrontal cortex 

and the insula. These and other studies have shown the usefulness of fMRI for determining 

which brain regions under specific behavioral conditions are affected by prolonged 

methamphetamine use. They also point to fMRI as a valuable technique to evaluate the effects 

Figure 1. Methamphetamine users 
(MA) in early abstinence have 
dysregulated glucose metabolism. 
Warmer values (reds/yellows) indicate 
higher activity in MA users than in 
control subjects especially in the 
amygdala. Cooler values (blues) indicate 
lower activity in MA users than in control 
subjects (from London et al., 2004 [53]). 
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of potential treatments for methamphetamine dependence. For example, medications, such as 

modafinil, which improve cognition, in part by promoting greater dopamine function, enhance 

brain function in the prefrontal cortical regions affected by methamphetamine abuse (Figure 2) 

[63]. 

 
 
 
 
 
 
 
 
 
 
 

Structural Brain Imaging. In keeping with the observations of brain function and 

biochemistry as related to methamphetamine abuse, abnormalities in components of 

frontostriatal circuitry have been demonstrated by structural brain imaging as well. Structural 

MRI studies have generally yielded the unexpected finding that methamphetamine abuse is 

associated with greater gray-matter volume in the basal ganglia (including the striatum) than in 

healthy control subjects [70, 71]. Until recently, however, it was unknown whether these 

differences in gray matter were caused by methamphetamine or if they reflected vulnerability 

factors that predated substance abuse. One study revealed that stimulant abusers and their 

unaffected siblings have greater volume in the putamen than healthy control participants, 

suggesting that the difference reflects familial risk for drug dependence [72]. Animal studies, 

however, have also shown that monkeys exposed to methamphetamine, using a regimen that 

simulates human patterns of drug use, have increases in putamen gray matter [73] (Figure 3). 

The structural change is correlated with impaired performance on a three-choice visual 

discrimination task that evaluates inhibitory control/cognitive flexibility.  

 

With respect to the cerebral cortex, it was unexpectedly found that in addition to larger 

striatal volumes, research participants who had used methamphetamine but had maintained 

abstinence for an average of three months, exhibited larger volumes of the parietal cortex [70]. 

This effect was not seen in a study of participants who had used methamphetamine for most of 

the 30 days before enrolling in a brain imaging study and then maintaining abstinence for about 

1-2 weeks [74]. Cortical maps of the MRI data revealed severe gray-matter deficits in medial 

aspects of the brain, including the cingulate, limbic, and paralimbic cortices as compared to 

control values, deficits in hippocampal volumes, which were related to verbal memory 

Figure 3. Exposure to methamphetamine is 
associated with structural differences in 
the brain.  Warmer values (reds) indicate 
increases in gray matter in the putamen. 
Cooler values (blues) indicate trends toward 
losses of gray matter in the prefrontal cortex 
(from Groman et al., 2013 [73]). 

 

 

Figure 2. fMRI brain activation maps showing 
response to Modafinil in prefrontal cortex 
during learning in methamphetamine users 
that corresponded with improvements in 
learning. Prefrontal regions include the 
anterior cingulate cortex and bilateral anterior 
insula/ventrolateral prefrontal cortex, orbito-
frontal cortex. No difference in activation was 
observed in healthy individuals (from 

Ghahremani et al,, 2011 [63]). 
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performance, and an unexpected observation of white-matter hypertrophy. The findings 

suggested that chronic methamphetamine abuse causes a selective pattern of deterioration that 

contributes to impaired cognitive performance, and white-matter hypertrophy that may reflect 

adaptive glial changes, including gliosis secondary to neuronal damage. Although not as 

dramatic, the same study found a gray-matter deficit in lateral prefrontal cortex [74], including a 

region (right inferior frontal gyrus) that is important for several forms of self-control [75]. 

Given the prominence of self-control deficiencies in methamphetamine addiction as well 

as other substance use disorders, it is important to understand the etiology of this structural 

abnormality and the extent to which it may be reversed with abstinence from drug of abuse. 

Therefore, methamphetamine-dependent subjects underwent structural MRI before and after 

approximately 3 weeks of abstinence from the drug [76]. Gray matter volume increased over 

time in the prefrontal cortex and other brain regions in methamphetamine-dependent 

participants, but not in members of a healthy control group that were scanned at a similar time 

interval (Figure 4, from Morales et al., 2012 [76]). Lack of full recovery may indicate the need 

for prolonged abstinence, some permanent damage, or the influence of a factor other than 

methamphetamine use. For example, approximately 87-92% of individuals who abuse 

methamphetamine also smoke cigarettes [77], and research suggests that some of the of the gray 

matter deficits in prefrontal cortex detected in MA-dependent individuals may be attributable to 

cigarette smoking or premorbid factors that promote it [76]. More research is necessary to 

determine how smoking and other factors may interact to influence gray matter in stimulant 

abusers as these interactions may have important implications for treatment. 

 

 

 

 

 

 

 

4. What Promising Treatments have been Developed as a Result of  

Basic Science Research? 
 

At this time, behavioral treatments are the most effective ones for methamphetamine 

dependence [78-81]. These include cognitive behavioral therapy and contingency management, 

but both are associated with high dropout rates early in treatment [82] and more than 50% 

relapse in the first 6-19 months after treatment ends [ 83, 84].  After more than two decades of 

concerted effort to develop a broadly effective medication for MA dependence, clinical trials 

have yielded no such agent [85 review]. One potentially very important consideration is the 

heterogeneity among methamphetamine users and the need to personalize treatment. In this 

Figure 4. Abstinence from 
methamphetamine increases 
gray matter in the brain.  
Cooler values (blues) indicate 
increases in gray matter in over 
the course of the first month of 
abstinence from methamphet-
amine, while warmer values 
(yellows and reds) indicate 
losses of gray matter (from 
Morales et al., 2012 [76]). 

 

 

http://www.drugabuse.gov/publications/research-reports/methamphetamine-abuse-addiction/what-treatments-are-effective-methamphetamine-abusers
http://www.drugabuse.gov/publications/research-reports/methamphetamine-abuse-addiction/what-treatments-are-effective-methamphetamine-abusers
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regard, promising findings have been observed with a handful of agents that reduce stimulant 

use in subgroups of patients. The approaches include opiate receptor antagonism, augmentation 

of dopamine action with medications that have relatively low abuse potential, antagonism of 

dopamine D3 receptors, and reducing glial cell activation.  

Naltrexone, an opiate receptor antagonist drug has been considered as a medication for 

stimulant abuse, in part, because of its potential to antagonize stimulant-induced augmentation 

of dopaminergic neurotransmission indirectly [86]. To date, clinical trials with naltrexone for 

treatment of amphetamine dependence have shown stronger effects than those of placebo on 

drug abstinence [86, 87] and retention in treatment [87]. These findings suggest that naltrexone 

may be useful for the treatment of methamphetamine dependence. 

The “agonist medication” approach, used successfully for treatment of opiate and 

nicotine use disorders, involves using a medication that mimics some of the actions of the 

abused drug without the same high addiction potential. In this regard, methylphenidate reduced 

amphetamine-positive urines in intravenous amphetamine users [88]. A phase II clinical trial 

involving methamphetamine users is now underway at UCLA, directed by Walter Ling.  

Some positive findings were obtained with modafinil, a non-amphetamine stimulant that 

has cognitive enhancing properties, and augments synaptic dopamine and norepinephrine [89, 

90].  In a randomised, double-blind, placebo-controlled trial with methamphetamine users, the 

medication was no more effective than placebo in improving retention in the trial or in reducing 

methamphetamine use in the full sample, but there was an indication of reduced stimulant use 

among participants who were compliant with their medication [91]. Negative findings were 

obtained in subsequent trials [92, 93], but compliance in one of these trials was cited as a 

problem [93].  Nonetheless, preliminary findings from the human laboratory indicate that 

modafinil reduces the rewarding effects of intravenous methamphetamine [94], and further 

studies are warranted, especially with the active enantiomer, R-modafinil [95]. 

Another medication that augments dopamine transmission is bupropion, which inhibits 

the dopamine transporter [96] and shows promise as a medication in subgroups of methamphet-

amine abusers. One placebo-controlled double-blind trial indicated that sustained-release 

bupropion did not outperform placebo in enhancing retention in the trail or in increasing 

methamphetamine-free urine samples, but participants who used methamphetamine 18 or fewer 

days in the month before randomisation exhibited a positive response to bupropion [97].  This 

finding was supported in a subsequent trial [98]. Finally, a small, randomised, placebo-controlled 

trial with high-risk men who have sex with men lacked the statistical power to detect differences 

in treatment outcome, but the findings were in the direction of efficacy of bupropion [99].  

Another promising pharmacotherapy is buspirone, which has antagonist properties at the 

dopamine D3 and D4 receptor subtypes [100 review]. Buspirone (Buspar®) is approved by the US 

Food and Drug Administration for treating anxiety, and its anxiolytic effect is thought to be 

mediated by a partial agonist action at a serotonin receptor (5HT1A) subtype [101-103]. 

Buspirone also exhibits antagonist properties at dopamine D3 and D4 receptors [100, 104-106]. 

The affinities of buspirone for D3 and D4 receptors are an order of magnitude higher than for D2 

receptors, but are similar to the affinity for 5HT1A receptors [100]. Thus, any behavioral effects 

of buspirone are attributable to activity at D3, D4 or 5HT1A receptors. 
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D3 receptor antagonists reduce the reinforcing and reward-facilitating properties of 

methamphetamine in rats. For example, administration of the D3 receptor antagonist SB-

277011A [107] or PG01097 [108, 109] attenuate methamphetamine self-administration under a 

progressive ratio schedule of reinforcement, suggesting that the reinforcing efficacy or the 

incentive motivational properties of methamphetamine are counteracted. Notably, D3 receptor 

blockade appears to diminish reinstatement of extinguished MA-seeking behavior [107, 108, 

110]. Combined with the demonstration of D3 receptor upregulation in methamphetamine users 

[52], these findings from animal studies identify buspirone as a potential medication for 

methamphetamine use disorders. 

Finally, given substantial evidence from studies of animal models of methamphetamine 

toxicity [53-55] and PET studies of human methamphetamine users [56], it is reasonable to 

believe that reactive gliosis and inflammation may contribute to the neuropathology of 

methamphetamine dependence. For this reason, there is interest in the potential for medications 

that reduce microglial activation as medications for methamphetamine use disorders.  One 

candidate is ibudilast, which is approved for treatment of bronchial asthma, post-stroke 

dizziness and ocular allergies in Asia. Ibudilast reduced methamphetamine self-administration 

in the rat [111] as well as methamphetamine prime-induced reinstatement of methamphetamine-

seeking behavior in rats [112].  A phase Ib clinical trial of ibudilast for the treatment of 

methamphetamine dependence is now being conducted by Steven Shoptaw at UCLA. 

 

5.  How Can the Scientific Disciplines Complement Ongoing Research 

Efforts in Methamphetamine Addiction? 

An interdisciplinary approach is needed for basic science to facilitate rapid progress in 

treatment for methamphetamine addiction. We have made great progress in understanding how 

methamphetamine alters brain function and behavior through the use of noninvasive brain 

imaging. This effort has required the collaborative effort of physicists and mathematicians to 

develop and improve the instrumentation for data collection as well as the algorithms for data 

analysis. Moreover, this research was linked to the efforts of cognitive neuroscientists to develop 

appropriate behavioral probes and clinicians to integrate this work in a way that targeted the 

problems of the addict.    

Certainly, the field would be advanced with the development of new probes and more 

sensitive instruments. For example, there is still a substantive need for new radiotracers that can 

be used in molecular imaging to assess the complexities of brain chemistry, how it changes with 

the progression of addiction and how it responds to treatment. However, the greatest advances 

require a strong collaboration involving a multi-disciplinary team. 

Such collaboration has been undertaken using cutting-edge neurotechnology in other 

areas of mental health, and can be used as models of success for addiction. For example, deep 

brain stimulation of neurocircuitry for the treatment of depressive illness has proven to be 

effective in mitigating relapse [113]. The work leading to this development comprised the 

confluence of several fields, including bioengineering, electrical engineering, materials science, 

neurosurgery, MRI physics, psychology, and neuroscience, to determine the optimal methods 
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and procedures for successful outcomes. Discussions of applying this technology to addiction 

have begun [114], yet much more interdisciplinary effort is required to adapt the technology to 

the context of addiction and to verify its efficacy. 
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